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A simple and efficient protocol for the synthesis of highly substituted imidazoles is developed through
the condensation of 1,2-dicarbonyl compound, aldehyde, and ammonium acetate or amine via multi-
component condensation strategy. The present method gives good to excellent yields of substituted
imidazoles.

� 2010 Elsevier Ltd. All rights reserved.
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Heterocyclic chemistry is one of the most important topics in
the synthetic organic chemistry arena that covers a wide variety
of potent molecules. Imidazoles and benzimidazoles are structural
scaffolds present as substructures in many natural products which
possess wide spectrum of biological activities covering anti-infla-
matory,1 anti-allergic,2 analgesic,3 and glucagon receptor antago-
nism.4 They are also the key intermediates in the synthesis of
many therapeutic agents. Omeprazole,5 Pimobendan,6 Losartan,
Olmesartan, Eprosartan, and Trifenagrel7 (Fig. 1) are some of the
leading drugs in the market with diverse functionalization around
the imidazole motif. Apart from being biologically active, this
structural core in the recent years has been in other advanced areas
of research such as fluorescence labeling agents,8–10 biological
imaging,11 and chromophores for non-linear optic systems.12 In
view of the numerous biological, pharmacological, and material
properties associated with this five-membered heterocyclic moi-
ety, the development of new synthetic protocols under varied mild
reaction conditions is always a matter of interest.

In the last decade numerous methods have been developed for
the synthesis of highly substituted imidazoles by using various cat-
alytic systems including silica gel or Zeolite HY,13 silica gel/NaH-
SO4,14 molecular iodine,15 K5CoW12O40-3H2O,16 heteropolyacids,17

HClO4–SiO2,18
L-proline,19 FeCl3�6H2O,20 BF3�SiO2

21, and silica-sup-
ported Wells–Dawson acid.22 They can also be obtained by use of
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microwave irradiation,23 and refluxing in acetic acid24 silica sulfu-
ric acid,25 NiCl2�6H2O/Al2O3,26 ZrCl4,27 ionic liquids,28 CAN,29 and
InCl3�3H2O.30 However, many of the methods reported above suffer
from one or more disadvantages such as the use of expensive mois-
ture-sensitive metallic reagents, longer reaction times, tedious
separation procedures, and large amount of catalyst loadings
which in turn results in the generation of huge amount of metal
wastes into the environment.

Multi-component reaction (MCRs) is convergent, in analogy to
the convergent synthesis and in contrast to a divergent multi-step
synthesis. These reactions are classified into various ways based on
the number of components involved in the reaction or their intrin-
sic variability. Now-a-days organic chemical syntheses involving
multi-component condensation strategy attained greater value,
as the target molecules are often obtained in a single step rather
Trifenagrel Eprosartan

Figure 1. Potent multi-substituted imidazole derivatives.
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Scheme 1. DABCO-catalyzed synthesis of multi-substituted imidazole derivatives.
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than multiple steps which minimize the tedious work-up proce-
dures and environmental hazardous wastes. In a multi-component
reaction the starting materials with desired functionalities reacted
together in a specified path resulting in a complex adduct, incorpo-
rating all the reactants, making it an ideal synthetic setting.31 In
continuation of our efforts toward the development of novel meth-
odologies under green chemical approaches herein we report a
mild, efficient, and facile one-pot synthesis of multi-substituted
imidazole derivatives for the first time by the multi-component
reaction of 1,2-diketone, amine source, and aldehyde using DABCO
as a base (Scheme 1).

In our initial experiments toward the development of this
methodology, we have reacted benzaldehyde (1.0 mmol) with
ammonium acetate (2.0 mmol) and 1,2-diketone derivative
(1.0 mmol) in ethanol resulting in the corresponding substituted
imidazole in lower yields at room temperature. It was observed
that the same reaction proceeded efficiently when we use DABCO
as a catalyst in ethanol at room temperature yielding the corre-
sponding substituted imidazole in 85% yield after 24 h. When we
attempted the same reaction in t-butanol at 60–65 �C the reaction
proceeded to completion within 12 h and yielded the correspond-
ing imidazole in 92% yield.32 Encouraged by this result we have ex-
Table 1
Synthesis of 2,4,5-substituted imidazoles by using DABCOa

Entry Aldehyde Amine source 1,2-diketone
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plored the efficiency of various bases on the reaction. Among the
bases tested for the condensation of benzaldehyde, ammonium
acetate, and benzil to yield 2,4,5-triphenyl-1H-imidazole are tri-
ethyl amine (75%), piperidine (78%), DBU (81%), and DABCO
(92%). However DABCO gave excellent yields.

In order to determine the most appropriate choice of solvent
system for this DABCO-catalyzed synthesis of substituted imida-
zoles, we have screened the solvents such as methanol, ethanol,
isopropanol, and tert-butanol. Of the solvents tested in the screen-
ing we got the maximum yield of the product in shorter reaction
times, when we use tert-butanol as solvent (Table 2).

In order to determine the scope of this reaction, we have syn-
thesized differently substituted 2,4,5-imidazoles and 1,2,4,5-imi-
dazoles by varying differently substituted aldehydes including
both electron-donating and electron-withdrawing groups. It is ob-
served that the reaction gave good yields of products with faster
reaction rate when the aldehyde bearing electron-withdrawing
group is used compared to the aldehydes with electron-donating
groups. The corresponding results are tabulated in Tables 1 and 3.

The plausible mechanism for the synthesis of substituted imida-
zoles in the presence of DABCO involves the initial reaction of DAB-
CO with aldehyde leading to the formation of intermediate (A),
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Table 1 (continued)

Entry Aldehyde Amine source 1,2-diketone Product Reported yield [ref] Yieldb (%)
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a Reaction conditions: aldehyde (1.0 mmol), ammonium acetate (2.0 mmol), 1,2-diketone (1.0 mmol), DABCO (0.7 mol %), t-BuOH (10 mL), 60–65 �C, 12–15 h.
b Isolated yield.
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Table 2
Screening of solvents for the condensation of benzaldehyde, ammonium acetate,
benzil using DABCO

Entry Solvent Time (h) Yield (%)

1 Methanol 12 67
2 Ethanol 12 80
3 iso-Propanol 12 78
4 tert-Butanol 12 92

Table 3
Synthesis of 1,2,4,5-substituted imidazoles by using DABCOa
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a Reaction conditions: aldehyde (1.0 mmol), ammonium acetate (1.0 mmol), amine (1.0
15 h.

b Isolated yield.
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which attacked by the amine source gives another intermediate (B)
which in turn reacts with another molecule of DABCO, followed by
a mole of amine source generating intermediate (C), with subse-
quent elimination of DABCO. This intermediate (C) on cyclocon-
densation with 1,2-diketone and 1,5-proton migration leads to
the desired product (Scheme 2). All the products were character-
ized by 1H, 13C NMR, IR, and mass spectra and compared with
authentic samples.33
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mmol), 1,2-diketone (1.0 mmol), DABCO (0.7 mol %), t-BuOH(10 mL), 60–65 �C, 12–
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Scheme 2. Plausible mechanistic pathway for the formation of substituted imidazole scaffold.
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In conclusion, we have developed a one-pot multi-component
reaction for the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetra-
substituted imidazoles catalyzed by DABCO in excellent yields.
This method involves mild reaction conditions, easy work-up,
and cleaner reaction profiles.
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8.05 (d, J = 7.5 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.52–7.24 (m, 13H), 12.59 (br s,
1H); IR (KBr): mmax 1584, 1629, 3440 cm�1; HRMS m/z calcd for C21H16N2

([M+H]+): 297.1391, found 297.1399.
2-(4-(Allyloxy)phenyl)-4,5-diphenyl-1H-imidazole (Table 1, entry 6): 1H NMR
(DMSO-d6, 300 MHz): d 4.61 (d, J = 5.0 Hz, 2H), 5.29 (dd, J1 = 10.3 Hz,
J2 = 1.1 Hz, 1H), 5.45 (dd, J1 = 17.1 Hz, J2 = 1.5 Hz, 1H), 6.00–6.13 (m, 1H), 7.07
(d, J = 8.8 Hz, 2H), 7.34–7.53 (m, 10H), 8.03(d, J = 8.8 Hz, 2H), 12.52 (br s, 1H);
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13C NMR (300 MHz, DMSO-d6): d 177.8, 158.3, 145.5, 133.5, 128.3, 127.6, 126.6,
123.2, 117.4, 114.7, 68.1; HRMS m/z calcd for C24H20N2O ([M+H]+): 353.1653,
found 353.1654.
2-(4-Phenoxyphenyl)-4,5-diphenyl-1H-imidazole (Table 1, entry 7): 1H NMR
(DMSO-d6, 300 MHz): d 7.05–7.91 (m, 19H), 12.75 (br s, 1H); 13C NMR
(300 MHz, DMSO-d6): d 178.5, 157.3, 145.2, 130.9, 130.5, 128.8, 123.9, 120.9,
118.8, 115.9; HRMS m/z calcd for C27H20N2O ([M+H]+): 389.1653, found
389.1643.
2-(Naphthalen-2-yl)-4,5-diphenyl-1H-imidazole (Table 1, entry 15): d 7.32–7.63
(m, 10H), 7.92–8.02 (m, 5H), 8.25 (d, J = 8.3 Hz, 1H), 8.62 (s, 1H), 12.60 (br s,
1H); 13C NMR (300 MHz, DMSO-d6): d 177.9, 132.9, 132.7, 129.3, 128.5, 128.3,
128.2, 127.8, 126.8, 126.4, 123.7, 123.5; HRMS m/z calcd for C25H18N2

([M+H]+): 347.1548, found 347.1538.
4,5-Di(furan-3-yl)-2-phenyl-1H-imidazole (Table 1, entry 19): 1H NMR (CDCl3,
300 MHz): d 6.31–6.33 (m, 2H), 6.79 (d, J = 3.3 Hz, 2H), 7.13–7.51 (m, 5H),
7.62–7.78 (m, 2H), 11.62 (br s, 1H); 13C NMR (300 MHz, CDCl3): d 176.9, 149.3,
146.4, 141.3, 128.9, 128.4, 125.7, 107.7; ESI-MS (m/z): 277 (M++1).
1-(4-Methoxyphenyl)-2,4,5-triphenyl-1H-imidazole (Table 3, entry 3): 1H NMR
(CDCl3, 300 MHz): d 3.76 (s, 3H), 6.72 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H),
7.09–7.55 (m, 13H), 8.04 (d, J = 8.8 Hz, 2H); HRMS m/z calcd for C28H22N2O
([M+H]+): 403.1810, found 403.1795.
1-(4-Fluorophenyl)-2,4,5-triphenyl-1H-imidazole (Table 3, entry 4): 1H NMR
(DMSO-d6, 300 MHz): d 7.25–7.37 (m, 4H), 7.42–7.46 (m, 2H), 7.50–7.63 (m,
9H), 7.72–7.81 (m, 2H), 7.89 (d, J = 6.7 Hz, 2H); HRMS m/z calcd for C27H19FN2

([M+H]+): 391.1610, found 391.1598.
2,4,5-Triphenyl-1-(1-phenylethyl)-1H-imidazole (Table 3, entry 6): 1H NMR
(DMSO-d6, 300 MHz): d 1.61 (d, J = 7.2 Hz, 3H), 5.55 (q, J1 = 14.2 Hz,
J2 = 7.1 Hz, 1H), 6.89–7.57 (m, 18H), 8.09 (d, J = 7.2 Hz, 2H); HRMS m/z calcd
for C29H24N2 ([M+H]+): 401.2017, found 401.2012.
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